Google Cloud Artifact Types¶
Artifact types corresponding to Google Cloud Resources produced and consumed by GCPC components.
These artifact types can be used in your custom KFP SDK components similarly to
other KFP SDK
artifacts.
If you wish to produce Google artifacts from your own components, it is
recommended that you use Containerized Python
Components.
You should assign metadata to the Google artifacts according to the artifact’s
schema (provided by each artifact’s .schema
attribute).
Classes:
|
An artifact representing a Google Cloud BQML Model resource. |
|
An artifact representing a Google Cloud BQ Table resource. |
|
An artifact representing evaluation classification metrics. |
|
An artifact representing evaluation forecasting metrics. |
|
An artifact representing evaluation regression metrics. |
|
An artifact representing a Vertex AI unmanaged container model. |
|
An artifact representing a Vertex AI BatchPredictionJob resource. |
|
An artifact representing a Vertex AI Dataset resource. |
|
An artifact representing a Vertex AI Endpoint resource. |
|
An artifact representing a Vertex AI Model resource. |
-
class google_cloud_pipeline_components.types.artifact_types.BQMLModel(name: str | None =
None
, uri: str | None =None
, metadata: dict | None =None
)[source]¶ Bases:
Artifact
An artifact representing a Google Cloud BQML Model resource.
Methods:
create
(name, project_id, dataset_id, model_id)Create a BQMLModel artifact instance.
Attributes:
- classmethod create(name: str, project_id: str, dataset_id: str, model_id: str) BQMLModel [source]¶
Create a BQMLModel artifact instance.
- Parameters¶:
- name: str¶
The artifact name.
- project_id: str¶
The ID of the project containing this model.
- dataset_id: str¶
The ID of the dataset containing this model.
- model_id: str¶
The ID of the model. For more details, see https://cloud.google.com/bigquery/docs/reference/rest/v2/models#ModelReference
- Returns¶:
BQMLModel instance.
-
schema =
'title: google.BQMLModel\ntype: object\nproperties:\n projectId:\n type: string\n datasetId:\n type: string\n modelId:\n type: string'
¶
-
schema_title =
'google.BQMLModel'
¶
-
schema_version =
'0.0.1'
¶
-
class google_cloud_pipeline_components.types.artifact_types.BQTable(name: str | None =
None
, uri: str | None =None
, metadata: dict | None =None
)[source]¶ Bases:
Artifact
An artifact representing a Google Cloud BQ Table resource.
Methods:
create
(name, project_id, dataset_id, table_id)Create a BQTable artifact instance.
Attributes:
- classmethod create(name: str, project_id: str, dataset_id: str, table_id: str) BQTable [source]¶
Create a BQTable artifact instance.
- Parameters¶:
- name: str¶
The artifact name.
- project_id: str¶
The ID of the project containing this table.
- dataset_id: str¶
The ID of the dataset containing this table.
- table_id: str¶
The ID of the table. For more details, see https://cloud.google.com/bigquery/docs/reference/rest/v2/TableReference
- Returns¶:
BQTable instance.
-
schema =
'title: google.BQTable\ntype: object\nproperties:\n projectId:\n type: string\n datasetId:\n type: string\n tableId:\n type: string\n expirationTime:\n type: string'
¶
-
schema_title =
'google.BQTable'
¶
-
schema_version =
'0.0.1'
¶
-
class google_cloud_pipeline_components.types.artifact_types.ClassificationMetrics(name: str | None =
None
, uri: str | None =None
, metadata: dict | None =None
)[source]¶ Bases:
Artifact
An artifact representing evaluation classification metrics.
Methods:
create
([name, recall, precision, f1_score, ...])Create a ClassificationMetrics artifact instance.
Attributes:
-
classmethod create(name: str =
'evaluation_metrics'
, recall: float | None =None
, precision: float | None =None
, f1_score: float | None =None
, accuracy: float | None =None
, au_prc: float | None =None
, au_roc: float | None =None
, log_loss: float | None =None
) ClassificationMetrics [source]¶ Create a ClassificationMetrics artifact instance.
- Parameters¶:
- name: str =
'evaluation_metrics'
¶ The artifact name.
- recall: float | None =
None
¶ Recall (True Positive Rate) for the given confidence threshold.
- precision: float | None =
None
¶ Precision for the given confidence threshold.
- f1_score: float | None =
None
¶ The harmonic mean of recall and precision.
- accuracy: float | None =
None
¶ Accuracy is the fraction of predictions given the correct label.
- au_prc: float | None =
None
¶ The Area Under Precision-Recall Curve metric.
- au_roc: float | None =
None
¶ The Area Under Receiver Operating Characteristic curve metric.
- log_loss: float | None =
None
¶ The Log Loss metric.
- name: str =
- Returns¶:
ClassificationMetrics instance.
-
schema =
'title: google.ClassificationMetrics\ntype: object\nproperties:\n aggregationType:\n type: string\n enum: - AGGREGATION_TYPE_UNSPECIFIED - MACRO_AVERAGE - MICRO_AVERAGE\n aggregationThreshold:\n type: number\n format: float\n recall:\n type: number\n format: float\n precision:\n type: number\n format: float\n f1_score:\n type: number\n format: float\n accuracy:\n type: number\n format: float\n auPrc:\n type: number\n format: float\n auRoc:\n type: number\n format: float\n logLoss:\n type: number\n format: float\n confusionMatrix:\n type: object\n properties:\n rows:\n type: array\n items:\n type: array\n items:\n type: integer\n format: int64\n annotationSpecs:\n type: array\n items:\n type: object\n properties:\n id:\n type: string\n displayName:\n type: string\n confidenceMetrics:\n type: array\n items:\n type: object\n properties:\n confidenceThreshold:\n type: number\n format: float\n recall:\n type: number\n format: float\n precision:\n type: number\n format: float\n f1Score:\n type: number\n format: float\n maxPredictions:\n type: integer\n format: int32\n falsePositiveRate:\n type: number\n format: float\n accuracy:\n type: number\n format: float\n truePositiveCount:\n type: integer\n format: int64\n falsePositiveCount:\n type: integer\n format: int64\n falseNegativeCount:\n type: integer\n format: int64\n trueNegativeCount:\n type: integer\n format: int64\n recallAt1:\n type: number\n format: float\n precisionAt1:\n type: number\n format: float\n falsePositiveRateAt1:\n type: number\n format: float\n f1ScoreAt1:\n type: number\n format: float\n confusionMatrix:\n type: object\n properties:\n rows:\n type: array\n items:\n type: array\n items:\n type: integer\n format: int64\n annotationSpecs:\n type: array\n items:\n type: object\n properties:\n id:\n type: string\n displayName:\n type: string'
¶
-
schema_title =
'google.ClassificationMetrics'
¶
-
schema_version =
'0.0.1'
¶
-
classmethod create(name: str =
-
class google_cloud_pipeline_components.types.artifact_types.ForecastingMetrics(name: str | None =
None
, uri: str | None =None
, metadata: dict | None =None
)[source]¶ Bases:
Artifact
An artifact representing evaluation forecasting metrics.
Methods:
create
([name, root_mean_squared_error, ...])Create a ForecastingMetrics artifact instance.
Attributes:
-
classmethod create(name: str =
'evaluation_metrics'
, root_mean_squared_error: float | None =None
, mean_absolute_error: float | None =None
, mean_absolute_percentage_error: float | None =None
, r_squared: float | None =None
, root_mean_squared_log_error: float | None =None
, weighted_absolute_percentage_error: float | None =None
, root_mean_squared_percentage_error: float | None =None
, symmetric_mean_absolute_percentage_error: float | None =None
) ForecastingMetrics [source]¶ Create a ForecastingMetrics artifact instance.
- Parameters¶:
- name: str =
'evaluation_metrics'
¶ The artifact name.
- root_mean_squared_error: float | None =
None
¶ Root Mean Squared Error (RMSE).
- mean_absolute_error: float | None =
None
¶ Mean Absolute Error (MAE).
- mean_absolute_percentage_error: float | None =
None
¶ Mean absolute percentage error.
- r_squared: float | None =
None
¶ Coefficient of determination as Pearson correlation coefficient.
- root_mean_squared_log_error: float | None =
None
¶ Root mean squared log error.
- weighted_absolute_percentage_error: float | None =
None
¶ Weighted Absolute Percentage Error. Does not use weights, this is just what the metric is called. Undefined if actual values sum to zero. Will be very large if actual values sum to a very small number.
- root_mean_squared_percentage_error: float | None =
None
¶ Root Mean Square Percentage Error. Square root of MSPE. Undefined/imaginary when MSPE is negative.
- symmetric_mean_absolute_percentage_error: float | None =
None
¶ Symmetric Mean Absolute Percentage Error.
- name: str =
- Returns¶:
ForecastingMetrics instance.
-
schema =
'title: google.ForecastingMetrics\ntype: object\nproperties:\n rootMeanSquaredError:\n type: number\n format: float\n meanAbsoluteError:\n type: number\n format: float\n meanAbsolutePercentageError:\n type: number\n format: float\n rSquared:\n type: number\n format: float\n rootMeanSquaredLogError:\n type: number\n format: float\n weightedAbsolutePercentageError:\n type: number\n format: float\n rootMeanSquaredPercentageError:\n type: number\n format: float\n symmetricMeanAbsolutePercentageError:\n type: number\n format: float\n quantileMetrics:\n type: array\n items:\n type: object\n properties:\n quantile:\n type: number\n format: double\n scaledPinballLoss:\n type: number\n format: float\n observedQuantile:\n type: number\n format: double'
¶
-
schema_title =
'google.ForecastingMetrics'
¶
-
schema_version =
'0.0.1'
¶
-
classmethod create(name: str =
-
class google_cloud_pipeline_components.types.artifact_types.RegressionMetrics(name: str | None =
None
, uri: str | None =None
, metadata: dict | None =None
)[source]¶ Bases:
Artifact
An artifact representing evaluation regression metrics.
Methods:
create
([name, root_mean_squared_error, ...])Create a RegressionMetrics artifact instance.
Attributes:
-
classmethod create(name: str =
'evaluation_metrics'
, root_mean_squared_error: float | None =None
, mean_absolute_error: float | None =None
, mean_absolute_percentage_error: float | None =None
, r_squared: float | None =None
, root_mean_squared_log_error: float | None =None
) RegressionMetrics [source]¶ Create a RegressionMetrics artifact instance.
- Parameters¶:
- name: str =
'evaluation_metrics'
¶ The artifact name.
- root_mean_squared_error: float | None =
None
¶ Root Mean Squared Error (RMSE).
- mean_absolute_error: float | None =
None
¶ Mean Absolute Error (MAE).
- mean_absolute_percentage_error: float | None =
None
¶ Mean absolute percentage error.
- r_squared: float | None =
None
¶ Coefficient of determination as Pearson correlation coefficient.
- root_mean_squared_log_error: float | None =
None
¶ Root mean squared log error.
- name: str =
- Returns¶:
RegressionMetrics instance.
-
schema =
'title: google.RegressionMetrics\ntype: object\nproperties:\n rootMeanSquaredError:\n type: number\n format: float\n meanAbsoluteError:\n type: number\n format: float\n meanAbsolutePercentageError:\n type: number\n format: float\n rSquared:\n type: number\n format: float\n rootMeanSquaredLogError:\n type: number\n format: float'
¶
-
schema_title =
'google.RegressionMetrics'
¶
-
schema_version =
'0.0.1'
¶
-
classmethod create(name: str =
-
class google_cloud_pipeline_components.types.artifact_types.UnmanagedContainerModel(name: str | None =
None
, uri: str | None =None
, metadata: dict | None =None
)[source]¶ Bases:
Artifact
An artifact representing a Vertex AI unmanaged container model.
Methods:
create
(predict_schemata, container_spec)Create a UnmanagedContainerModel artifact instance.
Attributes:
- classmethod create(predict_schemata: dict[str, str], container_spec: dict[str, Any]) UnmanagedContainerModel [source]¶
Create a UnmanagedContainerModel artifact instance.
- Parameters¶:
- predict_schemata: dict[str, str]¶
Contains the schemata used in Model’s predictions and explanations via PredictionService.Predict, PredictionService.Explain and BatchPredictionJob. For more details, see https://cloud.google.com/vertex-ai/docs/reference/rest/v1/PredictSchemata
- container_spec: dict[str, Any]¶
Specification of a container for serving predictions. Some fields in this message correspond to fields in the Kubernetes Container v1 core specification. For more details, see https://cloud.google.com/vertex-ai/docs/reference/rest/v1/ModelContainerSpec
- Returns¶:
UnmanagedContainerModel instance.
-
schema =
'title: google.UnmanagedContainerModel\ntype: object\nproperties:\n predictSchemata:\n type: object\n properties:\n instanceSchemaUri:\n type: string\n parametersSchemaUri:\n type: string\n predictionSchemaUri:\n type: string\n containerSpec:\n type: object\n properties:\n imageUri:\n type: string\n command:\n type: array\n items:\n type: string\n args:\n type: array\n items:\n type: string\n env:\n type: array\n items:\n type: object\n properties:\n name:\n type: string\n value:\n type: string\n ports:\n type: array\n items:\n type: object\n properties:\n containerPort:\n type: integer\n predictRoute:\n type: string\n healthRoute:\n type: string'
¶
-
schema_title =
'google.UnmanagedContainerModel'
¶
-
schema_version =
'0.0.1'
¶
-
class google_cloud_pipeline_components.types.artifact_types.VertexBatchPredictionJob(name: str | None =
None
, uri: str | None =None
, metadata: dict | None =None
)[source]¶ Bases:
Artifact
An artifact representing a Vertex AI BatchPredictionJob resource.
Methods:
create
(name, uri, job_resource_name[, ...])Create a VertexBatchPredictionJob artifact instance.
Attributes:
-
classmethod create(name: str, uri: str, job_resource_name: str, bigquery_output_table: str | None =
None
, bigquery_output_dataset: str | None =None
, gcs_output_directory: str | None =None
) VertexBatchPredictionJob [source]¶ Create a VertexBatchPredictionJob artifact instance.
- Parameters¶:
- name: str¶
The artifact name.
- uri: str¶
the Vertex Batch Prediction resource uri, in a form of https://{service-endpoint}/v1/projects/{project}/locations/{location}/batchPredictionJobs/{batchPredictionJob}, where {service-endpoint} is one of the supported service endpoints at https://cloud.google.com/vertex-ai/docs/reference/rest#rest_endpoints
- job_resource_name: str¶
The name of the batch prediction job resource, in a form of projects/{project}/locations/{location}/batchPredictionJobs/{batchPredictionJob}. For more details, see https://cloud.google.com/vertex-ai/docs/reference/rest/v1/projects.locations.batchPredictionJobs/get
- bigquery_output_table: str | None =
None
¶ The name of the BigQuery table created, in predictions_ format, into which the prediction output is written. For more details, see https://cloud.google.com/vertex-ai/docs/reference/rest/v1/projects.locations.batchPredictionJobs#outputinfo
- bigquery_output_dataset: str | None =
None
¶ The path of the BigQuery dataset created, in bq://projectId.bqDatasetId format, into which the prediction output is written. For more details, see https://cloud.google.com/vertex-ai/docs/reference/rest/v1/projects.locations.batchPredictionJobs#outputinfo
- gcs_output_directory: str | None =
None
¶ The full path of the Cloud Storage directory created, into which the prediction output is written. For more details, see https://cloud.google.com/vertex-ai/docs/reference/rest/v1/projects.locations.batchPredictionJobs#outputinfo
- Returns¶:
VertexBatchPredictionJob instance.
-
schema =
'title: google.VertexBatchPredictionJob\ntype: object\nproperties:\n resourceName:\n type: string\n bigqueryOutputTable:\n type: string\n gcsOutputDirectory:\n type: string\n bigqueryOutputDataset:\n type: string'
¶
-
schema_title =
'google.VertexBatchPredictionJob'
¶
-
schema_version =
'0.0.1'
¶
-
classmethod create(name: str, uri: str, job_resource_name: str, bigquery_output_table: str | None =
-
class google_cloud_pipeline_components.types.artifact_types.VertexDataset(name: str | None =
None
, uri: str | None =None
, metadata: dict | None =None
)[source]¶ Bases:
Artifact
An artifact representing a Vertex AI Dataset resource.
Methods:
create
(name, uri, dataset_resource_name)Create a VertexDataset artifact instance.
Attributes:
- classmethod create(name: str, uri: str, dataset_resource_name: str) VertexDataset [source]¶
Create a VertexDataset artifact instance.
- Parameters¶:
- name: str¶
The artifact name.
- uri: str¶
the Vertex Dataset resource uri, in a form of https://{service-endpoint}/v1/projects/{project}/locations/{location}/datasets/{datasets_name}, where {service-endpoint} is one of the supported service endpoints at https://cloud.google.com/vertex-ai/docs/reference/rest#rest_endpoints
- dataset_resource_name: str¶
The name of the Dataset resource, in a form of projects/{project}/locations/{location}/datasets/{datasets_name}. For more details, see https://cloud.google.com/vertex-ai/docs/reference/rest/v1/projects.locations.datasets/get
- Returns¶:
VertexDataset instance.
-
schema =
'title: google.VertexDataset\ntype: object\nproperties:\n resourceName:\n type: string'
¶
-
schema_title =
'google.VertexDataset'
¶
-
schema_version =
'0.0.1'
¶
-
class google_cloud_pipeline_components.types.artifact_types.VertexEndpoint(name: str | None =
None
, uri: str | None =None
, metadata: dict | None =None
)[source]¶ Bases:
Artifact
An artifact representing a Vertex AI Endpoint resource.
Methods:
create
(name, uri, endpoint_resource_name)Create a VertexEndpoint artifact instance.
Attributes:
- classmethod create(name: str, uri: str, endpoint_resource_name: str) VertexEndpoint [source]¶
Create a VertexEndpoint artifact instance.
- Parameters¶:
- name: str¶
The artifact name.
- uri: str¶
the Vertex Endpoint resource uri, in a form of https://{service-endpoint}/v1/projects/{project}/locations/{location}/endpoints/{endpoint}, where {service-endpoint} is one of the supported service endpoints at https://cloud.google.com/vertex-ai/docs/reference/rest#rest_endpoints
- endpoint_resource_name: str¶
The name of the Endpoint resource, in a form of projects/{project}/locations/{location}/endpoints/{endpoint}. For more details, see https://cloud.google.com/vertex-ai/docs/reference/rest/v1/projects.locations.endpoints/get
- Returns¶:
VertexEndpoint instance.
-
schema =
'title: google.VertexEndpoint\ntype: object\nproperties:\n resourceName:\n type: string'
¶
-
schema_title =
'google.VertexEndpoint'
¶
-
schema_version =
'0.0.1'
¶
-
class google_cloud_pipeline_components.types.artifact_types.VertexModel(name: str | None =
None
, uri: str | None =None
, metadata: dict | None =None
)[source]¶ Bases:
Artifact
An artifact representing a Vertex AI Model resource.
Methods:
create
(name, uri, model_resource_name)Create a VertexModel artifact instance.
Attributes:
- classmethod create(name: str, uri: str, model_resource_name: str) VertexModel [source]¶
Create a VertexModel artifact instance.
- Parameters¶:
- name: str¶
The artifact name.
- uri: str¶
the Vertex Model resource uri, in a form of https://{service-endpoint}/v1/projects/{project}/locations/{location}/models/{model}, where {service-endpoint} is one of the supported service endpoints at https://cloud.google.com/vertex-ai/docs/reference/rest#rest_endpoints
- model_resource_name: str¶
The name of the Model resource, in a form of projects/{project}/locations/{location}/models/{model}. For more details, see https://cloud.google.com/vertex-ai/docs/reference/rest/v1/projects.locations.models/get
- Returns¶:
VertexModel instance.
-
schema =
'title: google.VertexModel\ntype: object\nproperties:\n resourceName:\n type: string'
¶
-
schema_title =
'google.VertexModel'
¶
-
schema_version =
'0.0.1'
¶